

Scikit-Monaco Documentation

Scikit-monaco is a toolkit for Monte Carlo integration. It is
written in Cython for efficiency and includes parallelism to take
advantage of multi-core processors.

	Tutorials
	Installation

	Getting started

	Complex integration volumes

	Array-like integrands

	Importance sampling

	Reference Guide
	Uniform sampling Monte Carlo integration

	Importance sampling

	MISER Monte Carlo

	Utility functions

	Contributing

	Release Notes

Tutorials

	Installation

	Getting started

	Complex integration volumes

	Array-like integrands

	Importance sampling

Installation

Dependencies

scikit-monaco requires the following:

	Python (tested on 2.7 and 3.3)

	NumPy (tested on 1.8)

scikit-monaco may work with other versions of python and numpy, but these
are currently not supported.

You will also need the python development headers and a working C compiler. On
Debian-based operating systems such as Ubuntu, you can install the requirements
with:

sudo apt-get install python-dev python-numpy

Additionally, you will need the nose package to run the test suite. This can
be installed with:

sudo apt-get install python-nose

Installing using easy_install or pip

The easiest way to install a stable release is using pip or easy_install.
Run either:

pip install -U scikit-monaco

or:

easy_install -U scikit-monaco

This will automatically fetch the package from Pypi and install it. If your
python installation is system-wide, you will need to run these as root.

Installing from source

Download the source code from the Python package index [https://pypi.python.org/pypi/scikit-monaco], extract it, move into the
root directory of the project and run the installer:

python setup.py install

Installing the development version

scikit-monaco is version controlled under git [http://git-scm.com/]. The
repository is hosted on github [https://github.com/scikit-monaco/scikit-monaco]. Clone the repository
using:

git clone https://github.com/scikit-monaco/scikit-monaco.git

Move to the root of the project’s directory and run:

python setup.py install

To build the documentation, run python setup.py develop to build
scikit-monaco in the source directory, then cd doc; make html to build the
html version of the documentation.

Testing

Running python runtests.py in the project’s root directory will run the
test suite.

Benchmarks

There are some benchmarks available. These can be run using:

python -c "import skmonaco; skmonaco.bench()"

Getting started

Let’s suppose that we want to calculate this integral: \(\int_0^1 \int_0^1 x \cdot y \, dx dy\).
This could be computed using mcquad.

>>> from skmonaco import mcquad
>>> mcquad(lambda x_y: x_y[0]*x_y[1], # integrand
... xl=[0.,0.],xu=[1.,1.], # lower and upper limits of integration
... npoints=100000 # number of points
...)
(0.24959359250821114, 0.0006965923631156234)

mcquad returns two numbers. The first (0.2496…) is the value of
the integral. The second is the estimate in the error (corresponding,
roughly, to one standard deviation). Note that the correct answer in
this case is \(1/4\).

The mcquad call distributes points uniformly in a hypercube and sums
the value of the integrand over those points.
The first argument to mcquad is a callable specifying the integrand.
This can often be done conveniently using a lambda function. The integrand must
take a single argument: a numpy array of length d, where d is the number of
dimensions in the integral. For instance, the following would be valid integrands:

>>> from math import sin,cos
>>> integrand = lambda x: x**2
>>> integrand = lambda xs: sum(xs)
>>> def integrand(x_y):
... x,y = x_y
... return sin(x)*cos(y)

If the integrand takes additional parameters, they can be passed to the
function through the args argument. Suppose that we want to evaluate the
product of two Gaussians with exponential factors alpha and beta:

>>> import numpy as np
>>> from skmonaco import mcquad
>>> f = lambda x_y,alpha,beta: np.exp(-alpha*x_y[0]**2)*np.exp(-beta*x_y[1]**2)
>>> alpha = 1.0
>>> beta = 2.0
>>> mcquad(f,xl=[0.,0.],xu=[1.,1.],npoints=100000,args=(alpha,beta))
(0.44650031245386379, 0.00079929285076240579)

mcquad runs on a single core as default. The parallel behaviour can be
controlled by the nprocs parameter. The following can be run in an
ipython session to take advantage of their timing routines.

>>> from math import sin,cos
>>> from skmonaco import mcquad
>>> f = lambda x,y: sin(x)*cos(y)
>>> %timeit mcquad(f,xl=[0.,0.],xu=[1.,1.],npoints=1e6,nprocs=1)
1 loops, best of 3: 2.26 s per loop
>>> %timeit mcquad(f,xl=[0.,0.],xu=[1.,1.],npoints=1e6,nprocs=2)
1 loops, best of 3: 1.36 s per loop

Complex integration volumes

Monte Carlo integration is very useful when calculating integrals over
complicated integration volumes. Consider the integration volume shown in red
in this figure:

[image: ../_images/rings.png]

The integration volume is the intersection of a ring bounded by circles
of radius 2 and 3, and a large square.

The volume of integration \(\Omega\) is given by the following three
inequalities:

	\(\sqrt{x^2 + y^2} \ge 2\) : inner circle

	\(\sqrt{x^2 + y^2} \le 3\) : outer circle

	\(x \ge 1\) : left border of box

	\(y \ge -2\) : top border of box

Let \(\Omega\) denote this volume. Suppose that we want to find the integral
of \(f(x,y)\) over this region. We can re-cast the integral over
\(\Omega\) as an integral over a square that completely encompasses
\(\Omega\). In this case, the smallest rectangle to contain \(\Omega\) starts
has bottom left corner \((1,-2)\) and top right corner \((3,3)\). This
rectangle is shown in blue in the figure below.

Then:

\(\iint_\Omega f(x,y) \, dx dy = \int_{-2}^3 \int_1^3 g(x,y) \,dx dy\)

where

\(g(x,y) = \left\{ \begin{array}{l l}f(x,y) & (x,y) \in \Omega \\ 0 & \mathrm{otherwise}\end{array}\right.\)

This is illustrated in the figure below, which shows 200 points randomly
distributed within the rectangle bounded by the blue lines. Points in red fall
within \(\Omega\) and thus contribute to the integral, while points in
black fall outside \(\Omega\).

[image: ../_images/scatter.png]
To give a concrete example, let’s take \(f(x,y) = y^2\).

import numpy as np

def f(x_y):
 x,y = x_y
 return y**2

def g(x_y):
 """
 The integrand.
 """
 x,y = x_y
 r = np.sqrt(x**2 + y**2)
 if r >= 2. and r <= 3. and x >= 1. and y >= -2.:
 # (x,y) in correct volume
 return f(x_y)
 else:
 return 0.

mcquad(g,npoints=100000,xl=[1.,-2.],xu=[3.,3.],nprocs=4)
(9.9161745618624231, 0.049412524880183335)

Array-like integrands

We are not limited to integrands that return floats. We can have integrands
that return array objects. This can be useful for calculating several integrals
at the same time. For instance, let’s say that we want to calculate
both \(x^2\) and \(y^2\) in the volume \(\Omega\) described in the
previous section. We can do both these integrals simultaneously.

import numpy as np

def f(x_y):
 """ f(x_y) now returns an array with both integrands. """
 x,y = x_y
 return np.array((x**2,y**2))

def g(x_y):
 x,y = x_y
 r = np.sqrt(x**2 + y**2)
 if r >= 2. and r <= 3. and x >= 1. and y >= -2.:
 # (x,y) in correct volume
 return f(x_y)
 else:
 return np.zeros((2,))

result, error = mcquad(g,npoints=100000,xl=[1.,-2.],xu=[3.,3.],nprocs=4)
print result
[23.27740875 9.89103493]
print error
[0.08437993 0.04938343]

We see that if the integrand returns an array, mcquad will return two
arrays of the same shape, the first corresponding to the values of the
integrand and the second to the error in those values.

Importance sampling

The techniques described in the previous sections work well if the
variance of the integrand is similar over the whole integration volume. As a counter-example, consider the integral \(\int_{-\infty}^\infty \cos(x)^2 e
^{-x^2/2}\,dx\). Only the area around \(x = 0\) contributes to the integral in a significant way, while the tails, which stretch out to infinity, contribute almost nothing.

We would therefore like a method that samples more thoroughly regions where the integral varies rapidly. This is the idea behind importance sampling.

To use importance sampling, we need to factor the integrand \(f(x)\) into a probability distribution \(\rho(x)\) and another function \(h(x)\). For the integrand described above, we can take \(\rho(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}\) (normal distribution) and \(h(x) = \sqrt{2\pi}\cos^2(x)\). We can then draw samples from \(g(x)\) and, for each sample, calculate \(h(x)\). This is done using the function mcimport:

>>> from skmonaco import mcimport
>>> from numpy.random import normal
>>> from math import cos,sqrt,pi
>>> result, error = mcimport(lambda x: sqrt(2.*pi)*cos(x)**2, # h(x)
... npoints = 100000,
... distribution = normal # rho(x)
...)
>>> result # Correct answer: 1.42293
1.423388348518721
>>> error
0.002748743084305

We see that mcimport takes at least three arguments, the first one being the function \(h(x)\), that is, the integrand divided by the probability distribution from which we sample, the second being the number of points and the third is a function that returns random samples from the probability distribution \(\rho(x)\). The numpy.random module provides many useful distributions that can be passed to mcimport. mcimport returns two numbers: the first corresponds to the integral estimate, and the second corresponds to the estimated error.

Multi-dimensional integrals

To look at a slightly more complicated example, let’s integrate \(f(x,y) = e^{-(y+2)}\) in the truncated ring described above. The integrand is largest around \(y = -2\), and decays very quickly:

[image: ../_images/import_integrand.png]
\(e^{-(y+2)}\) in the truncated ring.

It makes sense to try and concentrate sample points around \(y = -2\). We can do this by sampling from the exponential distribution (centered about \(y=-2\)) along y and uniformly along x (in the region \(1 \le x < 3\)), such that \(\rho(x,y) = \frac{1}{2}e^{-(y+2)}\), where the pre-factor of \(1/2\) arises from the normalisation condition on the uniform distribution along x. The distribution function that must be passed to mcimport must take a size argument and return an array of shape (size,d) where d is the number of dimensions of the integral. This could be achieved with the following function:

from numpy.random import exponential, uniform

def distribution(size):
 """
 Return `size` (x,y) points distributed according to a uniform distribution
 along x and an exponential distribution along y.
 """
 xs = uniform(size=size,low=1.0,high=3.0)
 ys = exponential(size=size,scale=1.0) - 2.
 return np.array((xs,ys)).T

distribution(100).shape
(100,2)

This is what 200 points distributed according to distribution look like. Points that fall within \(\Omega\) are colored in red, and those that fall outside are colored in black. Evidently, points are concentrated about \(y = -2\), such that this region gets sampled more often.

[image: ../_images/import_plot.png]

The function to sample is \(f(x,y) = 2\) (the factor of 2 cancels the 1/(high-low) prefactor in the uniform distribution) if \(f(x,y) \in \Omega\) and 0 otherwise.

def f(x_y):
 """
 The integrand.
 """
 x,y = x_y
 r = np.sqrt(x**2 + y**2)
 if r >= 2. and r <= 3. and x >= 1. and y >= -2.:
 # (x,y) in correct volume
 return 2.
 else:
 return 0.

mcimport(f,1e5,distribution,nprocs=4)
(1.18178, 0.0031094848254976256)

Choosing a probability distribution

Generally, it is far from obvious how to split the integrand \(f(x)\) into a probability distribution \(\rho\) and an integration kernel \(h(x)\). It can be shown [NR] that, optimally \(\rho \propto |f|\). Unfortunately, this is likely to be very difficult to sample from.

The following recipe is relatively effective:

	If the integrand decays to 0 at the edge of the integration region, find a distribution that has the same rate of decay, or decays slightly slower. Thus, if, for instance, the integrand if \(p(x) e^{-x^2}\), where \(p(x)\) is a polynomial, sample from a normal distribution with \(\sigma=1/\sqrt{2}\), or slightly less if \(p(x)\) contains high powers that delay the onset of the exponential decay.

	Locate the mode of your distribution at the same place as the mode of the integrand.

The following two cases should be avoided:

	The probability distribution should not be low in places where the integrand is large.

	Somewhat less importantly, the probability distribution should not be high in regions where the variance of the integrand is low.

	NR

	Press, W. H, Teutolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical Recipes, The art of scientific computing, 3rd edition, Cambridge University Press (2007).

Reference Guide

Uniform sampling Monte Carlo integration

mcquad samples uniformly from a hypercube. This method can also be used to
integrate over more complicated volumes using the procedure described in
Complex integration volumes. It will lead to large errors if the
integration region is large and the integrand changes rapidly over a small
fraction of the total integration region.

	
skmonaco.mcquad(f, npoints, xl, xu, args=(), rng=None, nprocs=1, seed=None, batch_size=None)

	Compute a definite integral.

Integrate f in a hypercube using a uniform Monte Carlo method.

	Parameters

	f : function

The integrand. It must take an iterable
of length d, where d is the dimensionality of the integral,
as argument, and return either a float or a numpy array.

npoints : int

Number of points to use for the integration.

xl, xu : iterable

Iterable of length d, where d is the dimensionality of
the integrand, denoting the bottom left corner and upper
right corner of the integration region.

	Returns

	value : float or numpy array.

The estimate for the integral. If the integrand returns an array,
this will be an array of the same shape.

error : float or numpy array

An estimate for the error (the integral has, approximately, a 0.68
probability of being within error of the correct answer).

	Other Parameters

	nprocs : int >= 1, optional

Number of processes to use concurrently for the integration. Use
nprocs=1 to force a serial evaluation of the integral. This defaults
to 1.

seed : int, iterable or None

Seed for the random number generator. Running the integration with the
same seed guarantees that identical results will be obtained (even
if nprocs is different).
If the argument is absent, this lets the random number generator
handle the seeding.
If the default rng is used, this means the seed will be read from
/dev/random.

rng : module or class, optional

Random number generator. Must expose the attributes seed and ranf.
The numpy.random module by default.

batch_size : int, optional

The integration is batched, meaning that batch_size points are
generated, the integration is run with these points, and the
results are stored. Each batch is run by a single process. It may
be useful to reduce batch_size if the dimensionality of the
integration is very large.

args : list

List of arguments to pass to f when integrating.

Examples

Integrate x*y over the unit square. The true value is 1./4.

>>> mcquad(lambda x: x[0]*x[1], npoints=20000, xl=[0.,0.],xu=[1.,1.])
(0.24966..., 0.0015488...)

Calculate pi/4 by summing over all points in the unit circle that
are within 1 unit of the origin.

>>> mcquad(lambda x: 1 if sum(x**2) < 1 else 0.,
... npoints=20000, xl=[0.,0.], xu=[1.,1.])
(0.78550..., 0.0029024...)
>>> np.pi/4.
0.7853981633974483

The integrand can return an array. This can be used to calculate
several integrals at once.

>>> result, error = mcquad(
... lambda x: np.exp(-x**2)*np.array((1.,x**2,x**4,x**6)),
... npoints=20000, xl=[0.], xu=[1.])
>>> result
array([0.7464783 , 0.18945015, 0.10075603, 0.06731908])
>>> error
array([0.0014275 , 0.00092622, 0.00080145, 0.00069424])

Importance sampling

In importance sampling, the integrand is factored
into the product of a probability density \(\rho(x)\) and another function
\(h(x)\):

\[f(x) = \rho(x) h(x)\]

The integration proceeds by sampling from \(\rho(x)\) and calculating
\(h(x)\) at each point. In scikit-monaco, this is achieved with the
mcimport function.

	
skmonaco.mcimport(f, npoints, distribution, args=(), dist_kwargs={}, rng=None, nprocs=1, seed=None, batch_size=None, weight=1.0)

	Compute a definite integral, sampling from a non-uniform distribution.

This routine integrates f(x)*distribution(x) by drawing samples from
distribution. Choosing distribution such that the variance of f is
small will lead to much faster convergence than just using uniform
sampling.

	Parameters

	f : function

A Python function or method to integrate. It must take an iterable
of length d, where d is the dimensionality of the integral,
as argument, and return either a float or a numpy array.

npoints : int >= 2

Number of points to use in the integration.

distribution : function

A Python function or method which returns random points.
distribution(size) -> numpy array of shape (size,d) where
d is the dimensionality of the integral. If d==1,
distribution can also return an array of shape (size,).
The module numpy.random contains a large number of
distributions that can be used here.

	Returns

	value : float or numpy array

The estimate for the integral. If the integrand returns an
array, this will be an array of the same shape.

error : float or numpy array

The standard deviation of the result. If the integrand
returns an array, this will be an array of the same shape.

	Other Parameters

	args : tuple, optional

Extra arguments to be passed to f.

dist_kwargs : dictionary, optional

Keyword arguments to be passed to distribution.

nprocs : int >= 1, optional

Number of processes to use for the integration. 1 by default.

seed : int, iterable, optional

Seed for the random number generator. Running the integration with the
same seed guarantees that identical results will be obtained (even
if nprocs is different).
If the argument is absent, this lets the random number generator
handle the seeding.
If the default rng is used, this means the seed will be read from
/dev/random.

rng : module or class, optional

Random number generator. Must expose the attributes seed by
default. The numpy.random module by default.

batch_size : int, optional

The integration is batched, meaning that batch_size points
are generated, the integration is run with these points, and
the results are stored. Each batch is run by a single process.
It may be useful to reduce batch_size if the
dimensionality of the integration is very large.

weight : float, optional

Multiply the result and error by this number. 1.0 by default.
This can be used when the measure of the integral is not 1.0.
For instance, if one is sampling from a uniform distribution,
the integration volume could be passed to weight.

Examples

Suppose that we want to integrate exp(-x**2/2) from x = -1 to 1.
We can sample from the normal distribution, such that the
function f is f = sqrt(2*pi) if -1. < x < 1. else 0.

>>> import numpy as np
>>> from numpy.random import normal
>>> f = lambda x: np.sqrt(2*np.pi) * (-1. < x < 1.)
>>> npoints = 1e5
>>> mcimport(f,npoints,normal)
(1.7119..., 0.00116...)
>>> from scipy.special import erf
>>> np.sqrt(2.*np.pi) * erf(1/np.sqrt(2.)) # exact value
1.7112...

Now suppose that we want to integrate exp(z^2) in the unit
sphere (x^2 + y^2 + z^2 < 1). Since the integrand is uniform
along x and y and normal along z, we choose to sample uniformly
from x and y and normally along z. We can hasten the integration by
using symmetry and only considering the octant (x,y,z > 0).

>>> import numpy as np
>>> from numpy.random import normal, uniform
>>> f = lambda (x,y,z): np.sqrt(2.*np.pi)*(z>0.)*(x**2+y**2+z**2<1.)
>>> def distribution(size):
... xs = uniform(size=size)
... ys = uniform(size=size)
... zs = normal(size=size)
... return np.array((xs,ys,zs)).T
>>> npoints = 1e5
>>> result, error = mcimport(f,npoints,distribution)
>>> result*8,error*8
(3.8096..., 0.0248...)

The integrand can also return an array. Suppose that we want to
calculate the integrals of both exp(z**2) and z**2*exp(z**2)
in the unit sphere. We choose the same distribution as in the
previous example, but the function that we sum is now:

>>> f = lambda (x,y,z): (np.sqrt(2.*np.pi)*(z>0.)*(x**2+y**2+z**2<1.)*
... np.array((1.,z**2)))
>>> result, error = mcimport(f,npoints,distribution)
>>> result*8
array([3.81408558, 0.67236413])
>>> error*8
array([0.02488709, 0.00700179])

MISER Monte Carlo

mcmiser samples from a hypercube using the MISER algorithm, and
can also be used to integrate over more complicated volumes using the procedure
described in Complex integration volumes. The algorithm is adaptive,
inasmuch as it will use more points in regions where the variance of the
integrand is large. It is almost certainly likely to be superior to mcquad
for “complicated” integrands (integrands which are smooth over a large fraction
of the integration region but with large variance in a small region), with
dimensionality below about 6.

	
skmonaco.mcmiser(f, npoints, xl, xu, args=(), rng=None, nprocs=1, seed=None, min_bisect=100, pre_frac=0.1, exponent=0.6666666666666666)

	Compute a definite integral.

Integrate f in a hypercube using the MISER algorithm.

	Parameters

	f : function

The integrand. Must take an iterable of length d, where
d is the dimennsionality of the integral, as argument,
and return a float.

npoints : int

Number of points to use for the integration.

xl, xu : iterable

Iterable of length d, where d is the dimensionality of the
integrand, denoting the bottom left corner and upper right
corner of the integration region.

	Returns

	value : float

The estimate for the integral.

error : float

An estimate for the error (the integral has, approximately, a 0.68
probability of being within error of the correct answer).

	Other Parameters

	nprocs : int >= 1, optional

Number of processes to use concurrently for the integration. Use
nprocs=1 to force a serial evaluation of the integral. This defaults
to 1. Increasing nprocs will increase the stochastic error
for a fixed number of samples (the algorithm just runs several
MISER runs in parallel).

seed : int, iterable or None

Seed for the random number generator. Running the integration with the
same seed and the same nprocs guarantees that identical results will be obtained.
If the argument is absent, this lets the random number generator
handle the seeding.
If the default rng is used, this means the seed will be read from
/dev/random.

rng : module or class, optional

Random number generator. Must expose the attributes seed and ranf.
The numpy.random module by default.

args : list

List of arguments to pass to f when integrating.

min_bisect : int

Minimum number of points inn which to run a bisection. If the
integrator has a budget of points < min_bisect for a region,
it will fall back onto uniform sampling.

pre_frac : float

Fraction of points to use for pre-sampling. The MISER algorithm
will use this fraction of its budget for a given area to
decide how to bisect and how to apportion point budgets.

exponent : float

When allocating points to the sub-region, the algorithm will
give a fraction of points proportional to range**exponent,
where range is the range of the integrand in the
sub-region (as estimated by using a fraction pre_frac of
points). Numerical Recipes [NR0] recommends a fraction of 2/3.

Notes

Unlike mcquad, the integrand cannot return an array. It must return
a float.

The implementation is that proposed in Numerical Recipes [NR0]: when apportioning
points, we use |max-min| as an estimate of the variance in each sub-area,
as opposed to calculating the variance explicitly.

References

	NR0(1,2,3)

	W. H. Press, S. A. Teutolsky, W. T. Vetterling, B. P. Flannery,
“Numerical recipes: the art of scientific computing”, 3rd edition.
Cambridge University Press (2007)

Examples

Integrate x*y over the unit square. The correct value is 1/4.

>>> mcmiser(lambda x: x[0]*x[1], npoints=20000, xl=[0.,0.], xu=[1.,1.])
(0.249747..., 0.000170...)

Note that this is about 10 times more accurate than the equivalent
call to mcquad, for the same number of points.

Utility functions

	
skmonaco.integrate_from_points(f, points, args=(), nprocs=1, batch_size=None, weight=1.0)

	Compute a definite integral over a set of points.

This routine evaluates f for each of the points passed,
returning the average value and variance.

	Parameters

	f : function

A Python function or method to integrate. It must take an iterable
of length d, where d is the dimensionality of the integral,
as argument, and return either a float or a numpy array.

points : numpy array

A numpy array of shape (npoints,dim), where npoints is
the number of points and dim is the dimentionality of
the integral.

	Returns

	value : float or numpy array.

The estimate for the integral. If the integrand returns an array,
this will be an array of the same shape.

error : float or numpy array

An estimate for the error (the integral has, approximately, a 0.68
probability of being within error of the correct answer).

	Other Parameters

	nprocs : int >= 1, optional

Number of processes to use concurrently for the integration. Use
nprocs=1 to force a serial evaluation of the integral. This defaults
to the value returned by multiprocessing.cpu_count().

batch_size : int, optional

The integration is batched, meaning that batch_size points are
generated, the integration is run with these points, and the
results are stored. Each batch is run by a single process. It may
be useful to reduce batch_size if the dimensionality of the
integration is very large.

Examples

Integrate x*y over the unit square.

>>> from numpy.random import ranf
>>> npoints = int(1e5)
>>> points = ranf(2*npoints).reshape((npoints,2)) # Generate some points
>>> points.shape
(100000,2)
>>> integrate_from_points(lambda x_y:x_y[0]*x_y[1], points)
(0.24885..., 0.00069...)

Contributing

Scikit-monaco is in its infancy. There is a lot of scope for developpers to make
a strong impact by contributing code, documentation and expertise. All
contributions are welcome and, if you are unsure how to contribute or are
unfamiliar with scipy and numpy, we will happily mentor you. Just send an email
to <pascal@bugnion.org>.

How to contribute

The documentation [http://docs.scipy.org/doc/numpy/dev/gitwash/index.html] for Numpy gives a detailed description of how to contribute. Most of this information applies to development for scikit-monaco.

Developping with git

You will need the Git version control system [http://git-scm.com] and an account on Github [https://github.com] to
contribute to scikit-monaco.

	Fork the project repository [http://github.com/scikit-monaco/scikit-monaco] by clicking Fork in the top right of the page. This will create a copy of the fork under your account on Github.

	Clone the repository to your computer:

$ git clone https://github.com/YourUserID/scikit-monaco.git

	Install scikit-monaco by running:

$ python setup.py install

in the package’s root directory. You should now be able to test the code
by running $ nosetests in the package’s root directory.

You can now make changes and contribute them back to the source code:

	Create a branch to hold your changes:

$ git checkout -b my-feature

and start making changes.

	Work on your local copy. When you are satisfied with the changes, commit
them to your local repository:

$ git add modified files
$ git commit

You will be asked to write a commit message. Explain the reasoning behind
the changes that you made.

	Propagate the changes back to your github account:

$ git push -u origin my-feature

	To integrate the changes into the main code repository, click Pull Request
on the scikit-quantum repository page on your accont. This will notify the
committers who will review your code.

Updating your repository

To keep your private repository updated, you should add the main repository as
a remote:

$ git remote add upstream git://github.com/scikit-monaco/scikit-monaco.git

To update your private repository, you can then fetch new commits from
upstream:

$ git fetch upstream
$ git rebase upstream/master

Guidelines

Workflow

We loosely follow the git workflow [http://docs.scipy.org/doc/numpy/dev/gitwash/development_workflow.html] used in numpy development. Features should
be developped in separate branches and merged into the master branch when
complete. Avoid putting new commits directly in your master branch.

Code

Please follow the PEP8 conventions [http://www.python.org/dev/peps/pep-0008/] for formatting and indenting code and for variable names.

Documentation

Scikit-quantum uses sphinx [http://sphinx-doc.org/] with numpydoc [https://pypi.python.org/pypi/numpydoc] to process the documentation. We
follow the numpy
convention [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] on writing docstrings.

Use make html in the doc folder to build the documentation.

Testing

We use nose [http://nose.readthedocs.org/en/latest/] to test
scikit-quantum. Running nosetests in the root directory of the package
will run the tests.

Release Notes

Scikit-monaco v0.2.1 release notes

	Fixed bug when using MISER with numpy 1.9.0.

Scikit-monaco v0.2 release notes

	Add MISER algorith for recursive stratified sampling.

	All integration routines now respond to KeyboardInterrupt.

	Additional benchmarks for importance sampling.

Scikit-monaco v0.1.5 release notes

Version 0.1.5 provides an important bugfix. Seeds were not being properly
generated, such that repeated calls to mcquad or mcimport that came
within the same value of int(time.time()) had the same seed.

Seeding is now left to the (more capable) hands of the RNG, which just gets
passed seed(None) if the user hasn’t specified a seed.

Index

 I
 | M

I

 	
 	integrate_from_points() (in module skmonaco)

M

 	
 	mcimport() (in module skmonaco)

 	
 	mcmiser() (in module skmonaco)

 	mcquad() (in module skmonaco)

 _static/comment-bright.png

_images/scatter.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/import_integrand.png

_images/import_plot.png

_images/rings.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Scikit-Monaco Documentation

 		
 Tutorials

 		
 Installation

 		
 Dependencies

 		
 Installing using easy_install or pip

 		
 Installing from source

 		
 Installing the development version

 		
 Testing

 		
 Benchmarks

 		
 Getting started

 		
 Complex integration volumes

 		
 Array-like integrands

 		
 Importance sampling

 		
 Multi-dimensional integrals

 		
 Choosing a probability distribution

 		
 Reference Guide

 		
 Uniform sampling Monte Carlo integration

 		
 Importance sampling

 		
 MISER Monte Carlo

 		
 Utility functions

 		
 Contributing

 		
 How to contribute

 		
 Developping with git

 		
 Updating your repository

 		
 Guidelines

 		
 Workflow

 		
 Code

 		
 Documentation

 		
 Testing

 		
 Release Notes

 		
 Scikit-monaco v0.2.1 release notes

 		
 Scikit-monaco v0.2 release notes

 		
 Scikit-monaco v0.1.5 release notes

_static/up-pressed.png

_static/up.png

_static/plus.png

